
Genetic Programming

Chapter 6Chapter 6

Source: Eiben & Smith
Edited by: Hosein Alizadeh
http://webpages.iust.ac.ir/halizadeh/
Computer Engineering Department, Iran University of Science & Technology1



A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Genetic Programming

GP quick overview

� Developed: USA in the 1990’s
� Early names: J. Koza
� Typically applied to:

– machine learning tasks (prediction, classification…)

� Attributed features:
– competes with neural nets and alike– competes with neural nets and alike
– needs huge populations (thousands)
– slow

� Special:
– non-linear chromosomes : trees, graphs
– mutation possible but not necessary
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GP technical summary tableau

Representation Tree structures

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement
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Example: Credit Scoring

� Bank wants to distinguish good from bad loan 
applicants

� Model needed that matches historical data

ID No of 
children

Salary Marital 
status

OK?
children status

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 Divorced 1

…
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Example: Credit Scoring

� A possible model: 
IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

� In general: 
IF formula THEN good ELSE bad

� Only unknown is the right formula, hence
� Our search space (phenotypes) is the set of formulas� Our search space (phenotypes) is the set of formulas
� Natural fitness of a formula: percentage of well 

classified cases of the model it stands for
� Natural representation of formulas (genotypes) is: trees
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Example: Credit Scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

AND

>=

S2NOC 80000

>=
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Tree based representation

� Trees are a universal form, e.g. consider 
� Arithmetic formula

� Logical formula
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(x ∧ true) → (( x ∨ y ) ∨ (z ↔ (x ∧ y)))

� Program
i =1;
while (i < 20)
{

i = i +1
} 
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Tree based representation
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Tree based representation

(x ∧ true) → (( x ∨ y ) ∨ (z ↔ (x ∧ y)))
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Tree based representation

i =1;
while (i < 20)
{

i = i +1
} 
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Tree based representation in GP

GA, ES, EP GP

chromosomes are linear 
structures (bit strings, integer 
string, real-valued vectors, 
permutations)

Tree shaped chromosomes are 
non-linear structures

size of the chromosomes is fixed Trees in GP may vary in depth size of the chromosomes is fixed Trees in GP may vary in depth 
and width
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Tree based representation

� Symbolic expressions can be defined by 
– Terminal set T
– Function set F (with the arities of function symbols)

� Adopting the following general recursive definition:
1. Every t ∈ T is a correct expression
2. f(e1, …, en) is a correct expression if f ∈ F, arity(f)=n and e1, 

…, e are correct expressions …, en are correct expressions 
3. There are no other forms of correct expressions
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Offspring creation scheme

Compare 
� GA uses crossover AND mutation sequentially 

(be it probabilistically)
� GP scheme uses crossover OR mutation 

(chosen probabilistically)(chosen probabilistically)
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GP flowchartGA flowchart14
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Mutation

� Most common mutation: replace randomly 
chosen subtree by randomly generated tree
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Mutation cont’d

� Mutation has two parameters:
– Probability pm to choose mutation vs. recombination
– Probability to chose an internal point as the root of 

the subtree to be replaced

� Remarkably pm is advised to be 0 (Koza’92) or Remarkably pm is advised to be 0 (Koza’92) or 
very small, like 0.05 (Banzhaf et al. ’98)

� The size of the child can exceed the size of the 
parent
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Recombination

� Most common recombination: exchange two 
randomly chosen subtrees among the parents

� Recombination has two parameters:
– Probability pc to choose recombination vs. mutation

– Probability to chose an internal point within each – Probability to chose an internal point within each 
parent as crossover point

� The size of offspring can exceed that of the 
parents
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Parent 1 Parent 2

Child 2Child 118
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Selection 

� Parent selection is typically fitness proportionate

� Over-selection in very large populations
– rank population by fitness and divide it into two groups: 
– group 1: best x% of population, group 2 other (100-x)%
– 80% of selection operations chooses from group 1, 20% from group 2
– for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
– motivation: to increase efficiency, %’s come from rule of thumb – motivation: to increase efficiency, %’s come from rule of thumb 

� Survivor selection: 
– Typical: generational scheme
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Initialisation

� Maximum initial depth of trees Dmax is set

� Full method (each branch has depth = Dmax):
– nodes at depth d < Dmax randomly chosen from function set F
– nodes at depth d = Dmax randomly chosen from terminal set T

� Grow method (each branch has depth ≤ Dmax):
– nodes at depth d < D randomly chosen from F ∪ T– nodes at depth d < Dmax randomly chosen from F ∪ T
– nodes at depth d = Dmax randomly chosen from T

� Ramped Half-Half Initialisation
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Bloat Problem

� Bloat = “survival of the fattest”, i.e., the tree 
sizes in the population are increasing over time

� Needs countermeasures, e.g.
– Prohibiting variation operators that would deliver 

“too big” children“too big” children
– Parsimony pressure: penalty for being oversized
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Example application: 
symbolic regression

� Given some points in R2, (x1, y1), … , (xn, yn)

� Find function f(x) s.t. ∀i = 1, …, n : f(xi) = yi

� Possible GP solution:
– Representation by F = {+, -, /, sin, cos}, T = R ∪ {x}
– Fitness is the error
– All operators standard
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– All operators standard
– pop.size = 1000, ramped half-half initialisation
– Termination: n “hits” or 50000 fitness evaluations reached 

(where “hit” is if | f(xi) – yi | < 0.0001)

1i=
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Discussion

Is GP:

The art of evolving computer programs ?
Means to automated programming of computers?
GA with another representation?GA with another representation?
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